Stratifier
Warning
This library is under development, none of the presented solutions are available for download.
With this module, you will be able to obtain assistance in the stratification process of your plantations. Use forest inventory data to automatically stratify the plantations, selecting the forest variables you consider most relevant and either using a predefined number of strata or allowing the module to determine the optimal number of strata.
Class Parameters
Stratifier
Stratifier(df, y, *train_columns, iterator=None)
Parameters | Description |
---|---|
df | The dataframe containing the forest inventory data. |
*groups_columns | Columns that will be used for stratification. Numeric only. |
iterator | (Optional) The stratification will be performed for each iterator . |
Class Functions
functions and parameters
Stratifier.stratify_kmeans(k=None, k_method=None, max_k=100,
show_plots=True, save_plots_dir=None)#(1)!
Stratifier.stratify_hierarchical(k=None, k_method=None, max_k=10,
show_plots=True, save_plots_dir=None)#(2)!
- k = (Optional) Desired number of strata.
k_method = (Optional) If k is not specified, which method will be used to define the number of k. Options: elbow, silhouette, davies_bouldin, calinski_harabasz.Default = "elbow"
.
max_k = (Optional) Maximum number of strata to be created.
show_plots = Iftrue
, displays the radar chart with the generated strata.
save_plot_dir = (Optional) Directory to save the plots of the generated strata. - k = (Optional) Desired number of strata.
k_method = (Optional) If k is not specified, which method will be used to define the number of k. Options: elbow, silhouette, davies_bouldin, calinski_harabasz.Default = "elbow"
.
max_k = (Optional) Maximum number of strata to be created.
show_plots = Iftrue
, displays the radar chart with the generated strata.
save_plot_dir = (Optional) Directory to save the plots of the generated strata.
Parameters | Description |
---|---|
.stratify_kmeans() | Performs stratification using the K-Means algorithm. |
.stratify_hierarchical() | Performs stratification using the Agglomerative Clustering algorithm. |
Example Usage
- Import
Stratifier
class. - Import
pandas
for data manipulation.
stratifier_example.py | |
---|---|
- Load your CSV file containing the inventory data.
- Create a lista called
columns_used_for_stratification
containing the columns that will be used for the stratification. - Creates the variable
st
using the dataframedf
, passing the columnscolumns_used_for_training
as stratification parameters and using the columnCity
as an iterator. - Performs stratification using the "KMeans" algorithm, allowing the algorithm to determine the number of strata. Save the results in
stratified_df
variable.