Clutter Forecast
Warning
This library is under development, none of the presented solutions are available for download.
Use continuous forest inventory databases to predict forest growth and production. Utilize traditional method Clutter model. With this module, you will be able to estimate volume and basal area.
Class Parameters
Clutter Trainer
ClutterTrainer(df, age1, age2, ba1, ba2, site, vol, iterator=None)
Parameters | Description |
---|---|
df | The dataframe containing the continous processed forest inventory data. |
age1 | Name of the column containing the age of the previously sampled plot. |
age2 | Name of the column containing the age of the subsequently sampled plot. |
ba1 | Name of the column containing the basal area of the previously sampled plot. |
ba2 | Name of the column containing the basal area of the subsequently sampled plot. |
site | Name of the column containing the site index of the stand. |
vol | Name of the column containing the volume of the subsequently sampled plot. |
iterator | (Optional) Name of an iterator that will be used to group the data. Example of an iterator: Genetic material, Stratum. |
Example of clutter input
Iterator | Plot | age1 | age2 | ba1 | ba2 | site | vol |
---|---|---|---|---|---|---|---|
GM 1 | 1 | 2.5 | 3.5 | 7.57 | 8.42 | 7.83 | 44.04 |
GM 1 | 1 | 3.5 | 4.5 | 8.42 | 14 | 8.73 | 51.42 |
GM 1 | 2 | 2.1 | 3.1 | 4.94 | 5.51 | 6.98 | 38.06 |
GM 1 | 2 | 3.1 | 4.33 | 5.51 | 6.45 | 7.45 | 39.26 |
GM 2 | 1 | 2 | 3 | 7.3 | 8.25 | 11.37 | 74.63 |
GM 2 | 1 | 3 | 4 | 8.25 | 9.13 | 11.69 | 68.27 |
GM 2 | 1 | 4 | 5 | 9.13 | 12.79 | 12.83 | 72.76 |
GM 2 | 1 | 5 | 6 | 12.79 | 15.63 | 14 | 73.87 |
Class Functions
Parameters | Description |
---|---|
.fit_model() | Adjust the models for predicting basal area and volume. |
Clutter Models
Notation
: Initial basal area (at age ) in m²·ha⁻¹ : Final basal area (at age ) in m²·ha⁻¹ : Initial age in months or years : Final age in months or years : Site index, dimensionless, : Coefficients to be estimated : Final volume (at age ) in m³·ha⁻¹ : Coefficients to be estimated
Class Parameters
Clutter Predictor
ClutterPredictor(coefs_file, age1, site, ba1, iterator=None)
Parameters | Description |
---|---|
coefs_file | Directory of the json file containing the coefficients and parameters of the fitted models. |
age1 | Name of the column containing the age of the previously sampled plot. |
ba1 | Name of the column containing the basal area of the previously sampled plot. |
site | Name of the column containing the site index of the stand. |
iterator | (Optional) Name of an iterator that will be used for predictions. |
Class Functions
functions and parameters
ClutterTrainer.get_coefs()
ClutterTrainer.predict(age2)
ClutterTrainer.predict_range(age_range=(2, 10),show_plots=False)
Example Usage
clutter_forecast_example.py | |
---|---|
Example of output prediction plot
References
CLUTTER, J. L.; FORTSON, J. C.; PIENAAR, L. V.; BRISTER, G. H.; BAILEY, R. L. (1983). Timber management: a quantitative approach. New York: John Wiley & Sons, 333p.
ARCE, JULIO EDUARDO; DOBNER JR., MARIO. (2024). Manejo e planejamento de florestas plantadas: com ênfase nos gêneros Pinus e Eucalyptus. Curitiba, PR: Ed. dos Autores, 419p.