ANN Forecast
Warning
This library is under development, none of the presented solutions are available for download.
Use continuous forest inventory databases to predict forest growth and production. Utilize artificial neural networks for greater flexibility. With this module, you will be able to estimate volume, the number of stems, basal area, among other variables of interest.
Class Parameters
ANN Trainer
AnnTrainer(df, y, *train_columns, iterator=None)
Parameters | Description |
---|---|
df | The dataframe containing the continous processed forest inventory data. |
y | The target variable for training the ANN (Y), the variable on which the ANN will be trained to predict. |
*train_columns | (*args ) Names of the columns that will be used to train the artificial neural network so that it can predict the values of Y. Must be numeric. |
iterator | (Optional) Name of the column that contains the iterator . An artificial neural network will be adjusted for each iterator . |
Class Functions
- save_dir = Directory where the
.pkl
ann file will be saved.
Parameters | Description |
---|---|
.fit_model() | Adjust the model using *train_columns to predict the variable Y. |
Ann structures
6 different structures of artificial neural networks will be tested. Only the result from 1 model will be returned. The model returned will be selected by the ranking function.
For the 'ann' model, the module sklearn.neural_network.MLPRegressor is used.
---
title: ANN Parameters
---
classDiagram
direction LR
class MLPRegressor {
Epochs: 3000
Activation: logistic
Solver Mode: lbfgs
Batch size: dynamic
Learning rate init: 0.1
Learning rate mode: adaptive
}
class Model-0 {
Hidden layer sizes: (15, 25, 20, 30, 10)
}
class Model-1 {
Hidden layer sizes: (35, 10, 25, 35, 15)
}
class Model-2 {
Hidden layer sizes: (25, 15, 30, 20)
}
class Model-3 {
Hidden layer sizes: (15, 35, 45)
}
class Model-4 {
Hidden layer sizes: (35, 10, 25, 35, 15)
}
class Model-5 {
Hidden layer sizes: (35, 10, 25, 35, 15, 20, 15, 30)
}
MLPRegressor <|-- Model-0
MLPRegressor <|-- Model-1
MLPRegressor <|-- Model-2
MLPRegressor <|-- Model-3
MLPRegressor <|-- Model-4
MLPRegressor <|-- Model-5
ANN Predictor
AnnPredictor(pkl_file)
Parameters | Description |
---|---|
pkl_file | Directory of the .pkl file that will be used for prediction. |
Class Functions
- Returns the prediction of
Y
for the*args
columns. The*args
columns must be the same as those used in*train_columns
for training.
Example Usage
ann_forecast_example.py | |
---|---|
- Import
AnnTrainer
andAnnPredictor
class. - Import
pandas
for data manipulation.
- Load your CSV file for training de ann.
- Load your CSV file for predictions.
- Create a list containing the names of the columns that will be used to predict Y.
- Create the variable
ann_train
containing theAnnTrainer
class using the columncomercial-volume
as they
, thecolumns_used_for_training
asx
and the columnGenetic Material
as iterator. - Adjust the ann models, saving the
.pkl
files in the folderC:\Your\path\output
, and save the training metrics in the variableann_train_metrics
. - Load the adjusted model for
Genetic Material A
and save it in the variableann_predictor
. - Make predictions of
commercial-volume
using the columnscolumns_used_for_training
fromdf_predictions
.